
Current Transducer LT 2000-T

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 2000 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. cu Primary current, measurin Measuring resistance		2000 0 ± 30 R _{M min}	000 R _{Mmax}	A A
	with ± 15 V	@ ± 2000 A _{max}	0	7.5	Ω
		@ ± 2200 A max	0	2	Ω
	with ± 24 V	@ ± 2000 A _{max}	0	25	Ω
		@ ± 3000 A _{max}	0	8	Ω
I _{SN}	Secondary nominal r.m.s. current		400		mΑ
K _N	Conversion ratio		1:5000)	
v c	Supply voltage (± 5 %)		± 15 2	24	V
I _C	Current consumption		30 (@ ± 2	24 V)+ I s	mΑ
$\dot{\mathbf{V}}_{_{\mathrm{d}}}$	R.m.s. voltage for AC isola	ation test, 50 Hz, 1 mn	6	J	kV

Accuracy - Dynamic performance data

\mathbf{X}_{G}	Overall accuracy @ I_{PN} , $T_A = 25$ °C Linearity		± 0.4 < 0.1		% %
I _о	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O	0°C + 70°C	Typ ± 0.2	Max ± 0.8 ± 0.3	mA mA
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	00	μs A/μs kHz

General data

\mathbf{T}_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
R _s	Secondary coil resistance @ T _A = 70°C	25	Ω
m	Mass	6	kg
	Standards ²⁾	EN 50178	

Features

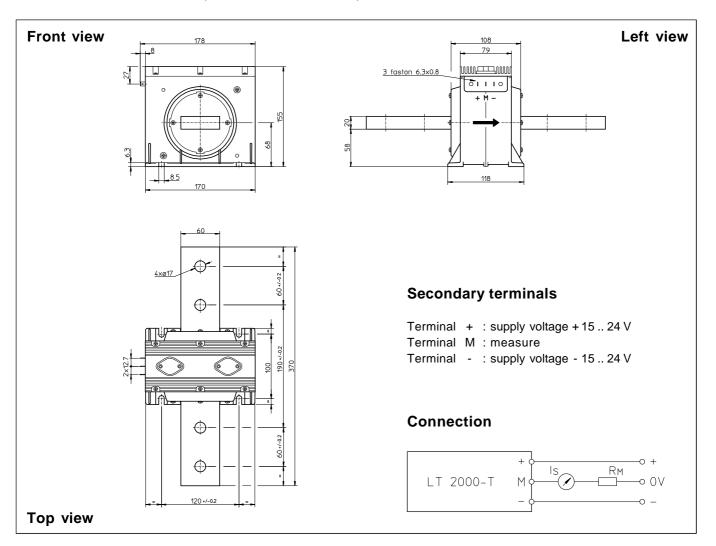
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes : 1) With a di/dt of 100 A/µs

980716/6

²⁾ A list of corresponding tests is available

Dimensions LT 2000-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance

Fastening

• Connection of primary

• Connection of secondary

± 0.5 mm

4 holes \varnothing 8.5 mm or by the primary bar

4 holes Ø 17 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.