Function:

This unit consists of a rectangular aluminium profile with 2 integrated roller guides. The carriage is moved by a belt drive. Each standard pulley has got one coupling claw on one side. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel. The openings of the guide body are sealed with 3 stainless steel cover bands to protect the guide from splash water and dust. Alternatively, the opening can also be covered with a bellow or can be delivered without cover bands.

Fitting position: Carriage mounting: By T-slots.

As required. Max. length 6.000 mm without joints.

Unit mounting: Belt type:

By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

 $\dot{\text{HTD}}$ with steel reinforcement, no backlash when changing direction, repeatability \pm 0, 1 mm.

Carriage support: In the standard version, the carriage runs on 8 rollers which can be adjusted and serviced at a central servicing

position. For longer carriages the number of rollers can be increased.

No-load torque

rorces	ana	rorques

Size	12	20	10	60	200		
Forces/Torques	static	dynamic	static	dynamic	static	dynamic.	
F _x (N)	894	800	1900	1800	4000	3800	
F _v (N)	1100	900	3000	2000	4400	3100	
F _z (N)	1250	1000	3500	2800	4900	4400	
$M_{_{\times}}$ (Nm)	150	125	400	320	600	510	
M, (Nm)	140	120	360	300	560	480	
M_z (Nm)	100	90	180	150	310	275	

All forces and torques related to the following:

 $\frac{F_y}{F_{y_{dyn}}} \quad \bullet \quad \frac{F_z}{F_{z_{dyn}}} \quad \bullet \quad \frac{Mx}{Mx_{dyn}} \quad \bullet \quad \frac{My}{My_{dyn}} \quad \bullet \quad \frac{Mz}{Mz_{dyn}} \leq 1$ existing values table values

1,2	1.5	
1, 4	1,5	1,8
1,6	2,1	4
'		'
4	6	8
'		'
900	1900	4000
1000	2090	4300
f inertia of aluminiu	m profile	'
6,6x10⁵	22,2x10⁵	63,8x10⁵
38,6x10⁵	122,0x10⁵	335×10 ⁵
70000	70000	70000
	900 1000 f inertia of aluminiu 6,6x10 ⁵ 38,6x10 ⁵	4 6 900 1900 1000 2090 f inertia of aluminium profile 6,6x10 ⁵ 22,2x10 ⁵ 38,6x10 ⁵ 122,0x10 ⁵

For life-time calculation of rollers use our homepage.

Driving torque:

$$M_{a} = \frac{F * P * S_{i}}{2000 * \pi} + M_{n}$$

$$P_a = \frac{M_a * n}{9.5.50}$$

= force (N) = pulley action perimeter (mm) Si = safety factor 1,2...2 $M_n = no-load torque$ (Nm)= rpm pulley (min-1)

M_a = driving torque = motor power

(Nm) (KW)

Deflection: E*I*192 f = deflection(mm) F = loadL = free length (mm) E = elastic modulus 70000 (N/mm^2) I = second moment of area (mm^4)

Positioning system DLZ 120, 160, 200

Dimensions (mm)

W = servicing position

*For slide nuts refer to chapter 2.2 page 2

Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	A	В	С	D -0,05	E	F	G	Н	1	J	К	M for	N for	O for	Р	Q	T	U	х	Y	Basic weight	Weight per 100 mm
DLZ 120	330	120	96	80	47	78	42	58	10	10	68	79	M 5	M 6	M 6	70	156	M 6	60	28	35	5,1 Kg	0,85 Kg
DLZ 160	440	160	130	100	68	90	60	78	11	12	90	106	M 6	M 8	M 8	95	200	M 8	80	39	45	13,0 kg	1,69 kg
DLZ 200	530	200	160	130	90	140	80	97	15	15	110	129	M 8	M10	M10	110	270	M10	100	49	50	23,4 kg	2,33 kg

O Choice of guide body profile:

internal profile without cover bands

without internal profile and cover bands

with bellows

Stainless versions upon request.

Size	Versi	on 0	Versi	ion 2	Version 3			
	Q	L	Q	L	Q	L		
120	156	330	196	370	>236	>410		
160	200	440	250	490	>300	>540		
200	270	530	330	600	>410	>680		

O Drive version:

9 is as 0, but with coupling claws on both sides.

The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings or tension sets (size 200).

Belt table

	Code Size		Belt	mm/rev.	Number of teeth		
0	4	120	5M25	130	26		
0	7	160	8M30	1 <i>7</i> 6	22		
0	9	160	8M50	1 <i>7</i> 6	22		
0	9	200	8M50	224	28		
ī	0	200	8M70	224	28		

Shaft dimensions / Coupling claw

Size	Shaft ø hó x length	Key	Coupling
120 (5M25)	14 x 35	5x5x28	14
160 (8M30)	18 x 45	6x6x40	19
160 (8M50)	25 x 35	8x7x32	- *
200 (8M50)	22 x 45	6x6x40	24
200 (8M70)	30 x 55	8x7x50	- *

DLZ | 160 | 1 | 0 | 0 | 0 | 0 | 7 |

1 01500 — Basic length + stroke = total length

* Coupling claw not possible with belt widening.

Sample ordering code:

DLZ 160 with internal profile and cover bands, standard carriage, coupling claw on one side, 1060 mm stroke.

